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The study of brain electrical activities in terms of deterministic nonlinear dynamics has recently received
much attention. Forbidden ordinal patterns �FOP� is a recently proposed method to investigate the determinism
of a dynamical system through the analysis of intrinsic ordinal properties of a nonstationary time series. The
advantages of this method in comparison to others include simplicity and low complexity in computation
without further model assumptions. In this paper, the FOP of the EEG series of genetic absence epilepsy rats
from Strasbourg was examined to demonstrate evidence of deterministic dynamics during epileptic states.
Experiments showed that the number of FOP of the EEG series grew significantly from an interictal to an ictal
state via a preictal state. These findings indicated that the deterministic dynamics of neural networks increased
significantly in the transition from the interictal to the ictal states and also suggested that the FOP measures of
the EEG series could be considered as a predictor of absence seizures.
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I. INTRODUCTION

Absence epilepsy, in which the seizures are accompanied
by spike-and-wave complexes, is a form of brain disorder
initiated by abnormally discharging neurons that recruit and
entrain neighboring neurons into a critical mass �1,2� and is
associated with significant changes in the EEG series �3,4�.
Recently, several methods have been developed to analyze
the temporal evolution of epileptic seizure of the brain from
the EEG series �5,6�. These methods range from the tradi-
tional linear analysis, such as Fourier transforms and spectral
analysis �7�, to nonlinear analysis derived from the theory of
nonlinear dynamical systems �also called chaos theory�, such
as the Lyapunov exponents �8,9� and correlation dimension
�10–12�. To some extent, these chaos-based methods are ca-
pable of extracting informative features from epileptic EEG
data �5,8,11� and are superior to the traditional linear meth-
ods �13�. In reality, a real epileptic EEG is a nonstationary
signal and stems from a highly nonlinear system �14�. There-
fore, applications of chaos-based methods to analyzing epi-
leptic EEG data are still limited �15,16�.

Recently, Bandt and Pompe �17,18� introduced permuta-
tion entropy as a computationally fast and conceptually
simple measure for the irregularity of a nonstationary time
series that does not require a reconstruction of an attractor in
state space. The basic principle of this method is consider-
ation of the order relations between the values of a time
series and not the values themselves, and as a result, it is
robust in the presence of observational and dynamical noise
�17,19�. Moreover, another advantage of the Bandt-Pompe
method is that it can discover a fundamental distinction be-
tween deterministic chaos and noisy systems �20,21�. These
advantages facilitate the use of methods based on the Bandt-
Pompe algorithm for investigating the intrinsic ordinal struc-

tures in complex time series, such as in physical systems
�19–33�, physiological systems �18,34–40�, and in engineer-
ing �41,42�.

The Bandt-Pompe-method-based forbidden ordinal pat-
terns �FOP� has been developed to evaluate the determinism
of a given time series �23–25�. For a sufficiently long ran-
dom time series, all ordinal patterns will appear, and there-
fore no pattern is forbidden. For a time series with determin-
istic behaviors, some patterns would not be encountered due
to the underlying deterministic structure, and these are called
forbidden ordinal pattern �23,42�. It has been demonstrated
that most chaotic systems exhibit FOP, and that in many
cases the measure of the number of these patterns is related
to other classical metric entropy rates �e.g., the Lyapunov
exponent� �22,23�. These properties can be embodied in a
simple method to distinguish deterministic from random
events �23�. In this paper, we investigated the existence of
FOP in the EEG series in a rat model of absence epilepsy.
Specifically, we investigated whether or not the FOP mea-
sures of the EEG series could effectively distinguish the pre-
ictal state from the interictal and ictal states in order to evalu-
ate whether FOP measures could be used to predict absence
seizures in this rat model of absence epilepsy.

II. MATERIALS AND METHODS

A. Animal experiments and EEG series

All procedures were performed under a British Home Of-
fice project license �UK Animals �Scientific Procedures� Act,
1986�. Experiments were performed in 24 male genetic ab-
sence epilepsy rats from Strasbourg �GAERS� of at least 13
weeks of age. At this stage of development, all GAERS dis-
play the characteristic repeated spike-wave discharges
�SWDs� on the EEG �43� during absence seizure. They were
anesthetized with medetomidine/ketamine �0.5 and 75 mg/kg
i.p., respectively� for the duration of the surgery, with imme-*Corresponding author. xiaoli.avh@gmail.com
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diate postoperative reversal of the effects of medetomidine
with atipamezole �1 mg/kg s.c.�. In all animals, a bipolar
twisted-wire EEG electrode �MS303/1; Semat Technical, St.
Albans, UK� was implanted in the frontal cortex �mm, rela-
tive to bregma; AP, 2.2: L, 2.4: V, 2.6 from the dura mater�.
The headmounts were secured to two skull screws with den-
tal cement �Duralay II�, and the animals were allowed to
recover overnight with free access to water and rat diet. The
following day, after connection of a cable to the EEG elec-
trode, the animal was transferred to an EEG recording cage
and left to acclimatize to this environment for at least 45
min. The signal from the EEG electrode was directly visual-
ized on an oscilloscope and was further amplified �BioAmp
ML 136�, filtered, digitized �100 Hz�, and stored using a
POWERLAB 2/20 RUNNING CHART v4.2 software �ADInstru-
ments, Hastings, UK�. Once regular SWD were being ob-
served, 30 min of EEG was recorded from each animal. The
EEG data sets were preprocessed by a 50 Hz notch filter and
a high pass filter at 0.5 Hz.

B. Visual inspection of the EEG series

The EEGs were visually inspected by an experienced ex-
perimental scientist to define the interictal EEG activities,
seizure, and artifacts. In all rats, the interictal EEG were
normal. The onset and offset of absence seizures were deter-
mined by the start and end times of SWDs, and these SWDs
were defined as large-amplitude rhythmic 7–8 Hz discharges
with typical spike-wave morphology lasting�1.0 s. Inter-
vals containing major artifacts were excluded from the analy-
sis. Start and end times for all SWDs were marked. Indi-
vidual absence seizures in GAERS ranged from 3 to 71 s in
duration with an average length of 19.6 s. From all seizures
recorded, those where the time gap between seizure onset
and the offset of the previous seizure was less than 30 s were
excluded from further analysis. Using these criteria, the total
length of seizures recorded was 8.4 h, with an average total
duration of 21 min per rat �range: 15–24 min�, and this com-
prised a total of 251 absence seizures �range: 5–15 per rat� in
24 rats.

C. Ordinal patterns

Ordinal patterns analysis is a technique of evaluating the
dynamic characteristics of a given time series �17,26�. Given
a time series of length L, �x1 ,x2 , . . . ,xL�, a vector can
be generated by an embedding procedure: St
= �xt ,xt+� , . . . ,xt+�m−1���, where m and � are the embedding
dimension and the lag, respectively. This vector St can be
rearranged in an ascending order, �xt+�j1−1���xt+�j2−1��� ¯

�xt+�jm−1���. To obtain a unique result, we set jr−1� jr in the
case of xt+�jr−1−1��=xt+�jr−1��. For m different numbers, there
will be m ! = �1�2� ¯ �m� possible ordinal patterns �i, i
=m!, also called permutations. For example, for m=3, there
are six ordinal patterns among xt, xt+�, and xt+2� as shown in
Fig. 1�a�, and the relation xt+2��xt�xt+� corresponds to the
ordinal pattern �4=231. Figure 1�b� illustrates the ordinal
patterns of a white-noise time series �left� and the logistic
map �right� �xn+1=4xn�1−xn� and 0�x0�1�, with m=3 and

�=1. Then we can count the occurrences of the ordinal pat-
tern �i, which is denoted as C��i�, and the relative frequency
is calculated by p��i�=C��i� / �L− �m−1���, i=1,2 , . . . ,m!,
as can be seen in Fig. 1�c�.

D. Forbidden ordinal patterns

As shown in Fig. 1�c�, the distributions of ordinal patterns
of the white-noise and logistic map time series are quite dif-
ferent. With regard the white-noise time series, all ordinal
patterns appear �i.e., no patterns are forbidden� because of
the characteristics of random behavior, and the probability
distribution of the ordinal patterns is even. In contrast, with
the logistic map time series, the pattern of �6=321 disap-
pears because of characteristics of deterministic behavior,
called forbidden ordinal pattern �23�. Furthermore, if an or-
dinal pattern of dimension m is “forbidden,” its absence per-
vades all longer dimensions of m in the form of more miss-
ing ordinal patterns �24�. As shown in Fig. 1�d�, the number
of FOP of the logistic map time series grows superexponen-
tially with the length of dimension m.

Most chaotic systems exhibit FOP, and in many cases the
measure of the number of these patterns is related to other
classic metric entropy rates �e.g., the Lyapunov exponent�
�22,23�. In other words, the existence of FOP should be a
hallmark of deterministic orbit generation and it can be used
to discriminate deterministic from random systems �24�.
However, when FOP analysis is applied to real-time series,
the finiteness of sequences will produce false FOP �i.e., or-
dinal patterns are missing in a random sequence without con-
straints�. Thus, the application of this method requires some
attention since real-time series are finite �making it possible
that random sequences have false FOP with finite probabil-
ity� and noisy �blurring the difference between determinism
and randomness� �25�. To this end, a sufficiently long series
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FIG. 1. �Color online� Ordinal patterns in simple time series. �a�
The six ordinal patterns of the dimension m=3. �b� Illustration of
the ordinal procedure for m=3 and �=1 for white-noise and logistic
map time series. �c� Probability distribution of order pattern �i. �d�
The number of FOP in the logistic map time series �L=106� are
computed with different dimensions, m= �3,4 ,5 ,6 ,7 ,8�.
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is required to avoid producing false forbidden patterns.
Given the embedding dimension m and the lag � and a time
series of length L, the number of possible ordinal patterns is
m!, while the number of groups of data is L− �m−1��. To
ensure all possible ordinal pattern of dimension m occur in a
time series of length L, the condition L− �m−1���m! must
be satisfied. For this reason, given a dimension of length m,
we need to choose L� �m+1�!.

E. FOP analysis of EEG series

A crucial parameter in the forbidden orbital patterns esti-
mation is the choice of the embedding dimension m for
analysis of EEG recordings. When m is too small �less than
3�, there are only very few distinct states for the EEG series;
a larger value of m would be better for a long EEG series. In
this study, too large a value of m would be inappropriate to
investigate ordinal pattern characteristics of the EEG series
of absence seizures since the average duration of each sei-
zure is 19.6 s �less than 2000 samples�. Therefore, to satisfy
the condition of L� �m+1�!, we chose a low dimension m
=4 or m=5 and delay �=1 for the FOP analysis in this study.

To illustrate the effect of parameter choice on the estima-
tion of FOP, an example is shown in Fig. 2. Figure 2�a� plots
a long-term EEG series of 180 s during a period of the in-
terictal state. A moving window technique was applied to
obtain the FOP from the EEG series. The criteria of windows
overlapped were that the time distance between two consecu-
tive windows was 0.1 s �10 samples�. The number of FOP,
n�4,L�, in each EEG segment is shown for the moving win-
dow of length 120 samples with overlap of 110 samples �Fig.
2�b��, the moving window of length 160 samples with over-
lap of 150 samples �Fig. 2�c��, and the moving window of
length 200 samples with overlap of 190 samples �Fig. 2�d��.
It was observed that the FOP occur most frequently in the
window of length 120 samples and occur least frequently in
the window of length 200 samples. To observe the FOP in
EEG segments of different window lengths L, we counted
the total number of FOP �n�m ,L� for �m+1� ! �L�2000 in
a long-term EEG recording, as shown in Fig. 2�e� for dimen-
sions m=4 and m=5. It was found that the number of FOP
decayed with increasing length L in an EEG recording. This
is because the greater the value of L, the more unlikely that a
dimension m pattern is missing in a noisy or random time
series of length L �23,24,42�.

F. Testing the significance

In this study, a surrogate data method �44� was used to
test the significance for FOP detection in EEG series. The
null hypothesis is taken to be that the time series data repre-
sents the Gaussian linear stochastic processes and not non-
linear processes. We generated surrogate time series by using
a Fourier transform of the original EEG series followed by
the inverse Fourier transform with phase randomization
�45,46�. In the surrogate data, the autocorrelation of the
original EEG data, i.e., the underlying linear autoregressive
processes, is preserved, while the nonlinear determinism in-
cluded in the original data, if any, has been lost. Hence, a
significant difference in the statistics between the original

and the surrogate data indicates that the null hypothesis
should be rejected and that nonlinear determinism is likely to
be present in the original data.

The number of FOP was calculated for surrogate time
series generated from original EEG recordings. If determin-
ism in the original EEG series is significant, the average
number of FOP in the surrogate data, �n�m ,L�	sur, will be
smaller than that in the original EEG data, �n�m ,L�	EEG. To
test for a statistically “significant difference” �Theiler’s
sigma� �44� in average number of FOP between original and
surrogate data, 100 surrogate data series are generated to
match each original EEG signal. Let �n�m ,L�	sur

i be the
average number of FOP of 100 surrogate series
�i=1,2 , . . . ,100�. If the difference between the original and
the surrogate �n�m ,L�	 is significantly larger than the stan-
dard deviation of the surrogate �n�m ,L�	, then this is a strong
indication of the deterministic structure in the investigated
EEG recordings. The mean and standard deviation of
�n�m ,L�	sur

i are estimated as �n�m ,L�	sur and
SD��n�m ,L�	sur

i �. Theiler’s sigma is then computed by
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FIG. 2. �Color online� The FOP in the interictal EEG recording.
�a� A representative example of a long-term interictal EEG series
from GAERS. The EEG series were spilt into overlapping segments
by a moving window technique. The time profile of the number of
FOP �dimension m=4� in each EEG segment for: �b� the moving
window of length 120 samples with overlaps of 110 samples, �c� the
moving window of length 160 samples with overlaps of 150
samples, and �d� the moving window of length 200 samples with
overlaps of 190 samples. �e� The total number of FOP �n�m ,L� in
this long-term EEG recording for dimensions m=4 �left� and m
=5 �right�. The dashed lines represent the mean values of �n�m ,L�
and the gray shadow represents the 95% confidence interval for the
surrogate data method �see statistical analysis below�.
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��n�m,L�	EEG − �n�m,L�	sur�/SD��n�m,L�	sur
i � . �1�

This statistic represents the number of standard deviations
distant from �n�m ,L�	EEG and approximately follows a nor-
mal distribution. For 	=0.05, the critical value is 1.96. Ac-
cordingly, when Theiler’s sigma is above 1.96, the null hy-
pothesis is rejected at the 95% probability level �46�.

III. RESULTS

A. Forbidden ordinal patterns in EEG series

To investigate whether forbidden ordinal patterns were
present in the EEG series, 93 seizures were first extracted
from GAERS EEG data. The criteria for the selection of the
seizure EEG data were that the intervals between the end and
beginning points of seizures were greater than 50 s and that
the duration of seizure was greater than 10 s. Then, the EEG
series were dissected from the interictal state �starting 10 s
after the end point of previous seizure and ending 10 s before
the beginning point of seizure�, the preictal state �starting 10
s before the beginning point of seizure and ending the begin-
ning point of seizure�, and the ictal state �starting the begin-
ning point of seizure and ending 10 s after the beginning
point of seizure�. Thus, longer �50 s and more� interictal
epochs, 10 s preictal epochs, and 10 s ictal epochs were
obtained for each of the 93 seizures. Previous studies had
shown that the duration of the preictal state was only around
a few seconds as determined by using entropy �39� or syn-
chronization measures �3�.

Figure 2 is an example of FOP measures in a representa-
tive interictal EEG recording. As shown in Fig. 2�e�, we
counted the total number of FOP �n�m ,L� for a �m+1� !
�L�2000 long-term EEG recording and its surrogate data.
Calculating the total FOP in the surrogate data sets with the
moving window technique, the range within which 95% of
false FOPs fell was illustrated by the gray shadow areas �see
Fig. 2�e��. The results showed that the phase randomized
surrogate data sets produced false FOP due only to statistical
limitations and that their number diminished to zero with
increasing length of the time series. Comparing the surrogate
data sets and the original EEG series, there were more miss-
ing ordinal patterns in the EEG series, and the number of
FOP significantly decreased with the sample length, L.

The above procedure was used to process all 279 EEG
epochs �3�93�. To compare the number of FOP in EEG
epochs during different states, we calculated the average

number of FOP �n�m ,L�	 for �m+1� ! �L�1000 in the in-
terictal, preictal, and ictal EEG epochs respectively, as
shown in Fig. 3. The results showed that the number of FOP
within ictal EEG epochs was much higher than that in inter-
ictal EEG epochs. The average number of FOP with different
windows length, L, gradually increased from the interictal to
ictal states for dimensions m=4 and m=5, respectively.

The numbers of FOP were also calculated for the surro-
gate time series generated from each EEG epoch. With di-
mension m=4 and window length L=120, the mean and
standard deviations of FOP in the interictal, preictal, and ictal
EEG epochs were 0.173
0.024 �range 0.129–0.210�,
0.591
0.139 �range 0.279–0.912�, and 3.172
1.407 �range
0.494–5.988�, while in the corresponding surrogated series
were 0.131
0.018 �range 0.101–0.175�, 0.372
0.156
�range 0.142–0.912�, and 1.062
0.684 �range 0.154–3.030�,
respectively. The average number of FOP computed on the
surrogate data, �n�4,120�	sur, versus the average number of
FOP of the corresponding original EEG data, �n�4,120�	EEG
is plotted in Fig. 4. From Fig. 4, it can be seen that most data
points �+� are distributed below the line �n�4,120�	sur
= �n�4,120�	EEG, so the average number of FOP in the origi-
nal EEG data is significantly greater than in the surrogate
data �P�0.05, Wilcoxon rank sum test� during the interictal,
preictal, and ictal phases, respectively. As a further check of
nonlinearity, the value of “Theiler’s sigma” was computed
for each EEG epoch. The Theiler’s sigma values in the inter-
ictal, preictal, and ictal intervals are plotted in Fig. 5, and the
average of these values are 1.76
1.62, 3.06
2.86, and
9.96
5.94 �mean
SD�, respectively. Using the surrogate
technique to determine whether a significant difference exists
in the number of FOP between original and surrogate data,
the results show that evidence for nonlinearity in EEG ep-
ochs in the interictal, preictal, and ictal intervals are present
in 41 of 93 �44.1%�, 56 of 93 �60.2%�, and 86 of 93 �92.5%�
of seizures, respectively.

B. Prediction of absence seizures

Next we considered whether the FOP method could be
considered as predictive of absence seizures in GAERS. In
this part of the study, a moving window technique �window
length of 1.2 s with an overlap of 1.1 s� was applied to
calculate the FOP number of the EEG series. The criterion of
windows overlapped was that the time distance between two
consecutive windows was 0.1 s �10 samples�. For the predic-
tion of absence seizures, only the lower dimension m=4 was
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selected during the calculation of FOP. This was because �i�
the dimension m must satisfy the condition of �m+1� ! �L
and �ii� the duration of the preictal state is only around a few
seconds as determined by using entropy �39� or synchroni-
zation measures �3�. Figure 6�a� shows an EEG series includ-
ing two absence seizures. At time t=60 s, an absence seizure
occurred. The definitions of interictal, preictal, and ictal
states are as described above, i.e., that the interval between
the interictal EEG segments and the end and beginning
points of seizures is greater than 10 s. The relative frequency
p��i� of order patterns in each EEG segment for dimension
m=4 is shown in Fig. 6�b�. Different relative frequency dis-
tributions of EEG segments during different seizure states
can be seen. In particular, during the ictal state, the repeated
SWD is a characteristic of absence epilepsy so that the num-
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FIG. 6. �Color online� The prediction analysis of absence sei-
zures from EEG series. �a� The continuous EEG series with two
seizures. �b� The relative frequency p��i� of order patterns have
been obtained using a moving window technique and are shown in
a color scale, indicating the actual value from the smallest in white
to the largest in black. �c� The time profile of the number of FOP in
each EEG segment. �d� The zoomed seizure onset.
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ber of FOP in the EEG segments increases markedly from
the interictal state to the ictal state, as shown in Fig. 6�c�.
During the interictal state only the number of FOP
n�4,120�=1 is present. However, during the preictal state
�starting 10 s prior to seizure onset� the number of FOP
n�4,120�=2 is observed for some EEG segments.

Next, to investigate the predictability of absence seizures
with order patterns analysis, the number of FOP was applied
to detect the preictal state. The threshold, T, for detecting
preictal state, was determined by the number of FOP n�m ,L�
in EEG segments. The cross point between n�m ,L� and the
threshold T is called a precursor; and the interval between
the precursor and the onset of the seizure was defined as the
anticipation time in this study. As illustrated in Fig. 6�c�,
when the threshold T2=2 was selected, the preictal state was
successfully detected, defined as a positive prediction, at
time t=55.5 s, i.e., the anticipation time was 4.5 s. When the
threshold T1=1 was chosen, the anticipation time larger than
10 s, i.e., the preictal state was falsely detected during the
interictal phase, and this is called a false positive prediction.
When the threshold T was greater than 2, no alarm was ob-
tained during the preictal and interictal states, meaning that
this threshold could not successfully predict this absence sei-
zure. On lowering the threshold further, the seizure predic-
tion method becomes not only more sensitive in the preictal
phase, but eventually also in the interictal state, leading to
more false positive predictions �47�. The above method �win-
dow length L=120 and dimension m=4� was applied to ana-
lyze the entire EEG data set. With threshold T=2, from 251
seizures, the FOP measures can find that 50.2% of the sei-
zures contain predictive states; 17.9% of the seizures do not.
The false positive rate of this detection method is 31.9%.

To further investigate the performance of this prediction
method, it was applied to the entire data set with different
window lengths L �varying from 120 to 400 with a step of
five samples� and thresholds T �varying from 1 to 5 with a
step of 1�. As shown in Fig. 7, it was found that the number
of false positive predictions decreased with the increase in
threshold value T, and there were no false positive predic-
tions in all 251 absence seizures when the threshold value T
was equal to or greater than 4. On the other hand, the number
of false positive predictions gradually decreased with the in-
crease in the window length L. This is because the number of
FOP in EEG generally decreased with the length of a noisy
EEG segment. Additionally, this seizure prediction method
was robust in the interictal state when the value of threshold
T or window L is big but reduced the positive prediction

rates in the preictal state. In this study, the largest number of
positive predictions, 155 out of 251 seizures �61.8%�, was
obtained with the parameters of threshold T=2 and window
length L=130. However, for the same threshold and window
length, there was also a relatively high false positive predic-
tion rate �11 out of 251�. The practicalities of seizure predic-
tion are that false positive predictions cannot entirely be pre-
vented. However, too many false alarms may result in a
negative effect on the patients who may not take further
alarms seriously and may thus be unprepared for a seizure.
On the other hand, those epilepsy patients who take all
alarms seriously may suffer from huge psychological stress
as a result of false positives. Thus, a seizure prediction
method should obtain as high a positive prediction rate and
as low a false positive prediction rate as possible �47�. With
the parameters of threshold T=2 and window length L
=140, we obtained the best performance of prediction with
positive prediction in 151 out of 251 seizures �60.2%� and
only a single false positive prediction.

IV. DISCUSSION

The theory of nonlinear dynamical systems has provided
the basis for a method of studying pattern formation in the
complex neuronal networks of the brain. An established
method is to reconstruct a phase space from the EEG series
then and then to characterize the dynamics of brain activity
in terms of its dimension or its Lyapunov exponents and
entropy �5�. Recently, methods have been developed to char-
acterize other features of local brain dynamics, including
forecasting, time asymmetry and determinism �5�. In this
study, the FOP method has been presented for analyzing the
determinism of EEG series in GAERS. This has revealed a
high number of FOPs during the ictal state that is greater
than during the interictal state. Thus, the determinism �regu-
larity� of the EEG series could be applied to predict oncom-
ing absence seizures.

A. Determinism in EEG series

In this study, the extracellular recording of local-field po-
tentials �LFPs� in the frontal cortex was analyzed. These re-
cordings represent a running average of all of the dendritic
activities surrounding the implanted electrode. In particular,
the oscillatory properties of LFPs can be observed, such as
the spike-wave discharges that characterize the absence sei-
zure state, which are related to activity in the functional
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structures of the neural network. Most neuronal networks are
nonlinear excitable systems. Therefore, an important issue is
to answer the question of whether neural networks display
deterministic behavior or are purely stochastic �48�.

In this study, a high number of FOPs in the EEG series
during the ictal state were found, which indicates that the
determinism of the EEG series is significant during absence
seizures �see Fig. 3�. Similar results have been reported pre-
viously. For example, in �4�, a recurrence quantification
analysis was applied to indicate the deterministic dynamics
of the EEG series at the seizure-free, preseizure, and seizure
states in GAERS. The results showed that EEG epochs dur-
ing preseizure intervals exhibited a higher degree of deter-
minism than during seizure-free EEG epochs but lower than
those in seizure EEG epochs in absence epilepsy. In �49�,
Cao’s method and the differential entropy method were used
to estimate the embedding dimensions of normal and epilep-
tic EEG series, and it was shown that epileptic EEG signals
have determinism. By characterizing the trajectories of the
EEG signals via singular value decomposition, the determin-
ism for intracranial EEG recordings during seizures was
more significant than during nonseizures �50�. These findings
support the belief that the underlying dynamics of EEG se-
ries in absence epilepsy is related to their increased deter-
minism �regularity�, arising from the synchronous discharge
of large numbers of neurons �1,2�.

Furthermore, we have used the surrogate data method to
test the significance level of FOP measures, and to discrimi-
nate deterministic dynamics from a random series �see Figs.
4 and 5�. The number of FOPs in the original EEG data
during the interictal state was significantly greater than those
in the surrogate data. It was also found that the Theiler’s
sigma value of greater than 1.96 was presented in 41 of 93
�44.1%� in the interictal EEG series. This result is consistent
with the fact that EEG signals contain complex structures
across multiple spatial and temporal scales. These results
support the view that EEG signals are not random but con-
tain complex deterministic structural information �13,51,52�.
However, the determinism is not significantly detected in the
remaining 52 interictal EEG series. The absence of nonlin-
earity, or the failure to detect nonlinearity, could be related to
the fact that EEG series are noisy. It suggests that these
EEGs within interictal intervals are generated by a high-
dimensional process that cannot be distinguished from noise
on the basis of these analyses �53,54�. Therefore, a further
study will be needed to reconfirm the nonlinearity in the
interictal EEG series by using another surrogate method.

It was observed that the number of FOP in preictal EEG
epochs was higher than that in interictal EEG epochs but
lower than that in ictal EEG epochs. A possible reason for
this is that the epileptic process induces or enhances nonlin-
ear deterministic structures in an otherwise linear stochastic
appearance of the EEG �4,55,56�. The absence seizure is
initiated by abnormally discharging neurons that recruit and
entrain neighboring neurons into a critical mass. This process
manifests itself as increasing synchronization of neuronal ac-
tivity �1,2�, which implies an increasing determinism of the
EEG data. These results are similar to the findings that dif-
ferent EEG rhythms were presented in different pathological
brain states �6,52�.

B. Prediction of absence seizures

Over the past ten years, many strategies for analyzing and
predicting seizures have been evaluated, including linear and
nonlinear measures, such as the Lyapunov exponents �8,9�,
correlation dimension �10–12�, similarity �57,58�, and other
methods �59,60�. However, since the EEG data include the
transient signal embedded in noise and nonstationary signals
�14�, the detection of the evolutionary characteristics of EEG
data is still an open issue �15,16�, and the existing prediction
methods are still not sufficiently robust for clinical applica-
tions �6�. It is thus desirable to develop new prediction meth-
ods for epileptic seizures.

Our results showed that the FOP measure could provide a
quantitative value to differentiate interictal, preictal, and ictal
states based on the ordinal dynamics patterns in EEG series,
which led us to investigate whether or not the FOP measures
could be effectively used to predict absence seizures �see
Figs. 5 and 6�. Analysis of the entire EEG data found that
FOP measures successfully predicted absence seizures prior
to the onset in 151 out of 251 seizures �60.2%� with the
threshold value of T=2. During absence seizures, the firing
pattern of the thalamocortical neurons shifts to an oscillatory
rhythmic synchronized state of the EEG �61�. Recent evi-
dence, however, has suggested a focal initiation site for ab-
sence seizures within the facial somatosensory cortex
�62–64�, which can then recruit and entrain neighboring cor-
tical and thalamic neurons into a critical mass, i.e., an in-
creasing synchronization of neuronal activity. In this study,
we can also observe there is an increase in signal amplitude
and regularity before appearance of the first spike and wave
component �see Fig. 6�d��, and this is a major reason of the
increasing number of FOP during the preictal state.

Furthermore, another important advantage of the FOP
method to predict epileptic seizures is the very simple algo-
rithm and hence faster computation: �i� only three param-
eters: dimension m, window length L, and threshold T, need
to be selected; and �ii� the FOP measure of a single channel
EEG of 1.5 s could be calculated in less than 2 ms by using
MATLAB �Math Works Inc.� on a 1.6 GHz personal computer.
In comparison to the prediction of seizures with permutation
entropy and sample entropy �39�, FOP measures are better
able to predict absence seizures. Therefore a real-time online
seizure prediction can be obtained based on FOP measures.
These results suggest that FOP measures in the EEG data
have the potential of providing the basis for designing an
automated closed-loop seizure prevention system for absence
epilepsy. An important next goal will be to confirm the re-
sults presented here in a large clinical cohort of absence epi-
lepsy patients.
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